Optimization of EDM Process Parameters: A Review

نویسندگان

  • Vikram Singh
  • S. K. Pradhan
چکیده

Electrical Discharge Machining performance is generally evaluated on the basis of Material Removal Rate (MRR), Tool Wear Rate (TWR), Relative Wear Ratio (RWR) and Surface Roughness (SR). The important EDM machining parameters affecting to the performance measures of the process are discharge current, pulse on time, pulse off time, arc gap, and duty cycle [9]. A considerable amount of work has been reported by the researchers on the measurement of EDM performance on the basis of MRR, TWR, RWR, and SR for various materials. Several approaches are proposed in the literature to solve the problems related with optimization of these parameters. It is felt that a review of the various approaches developed would help to compare their main features and their relative advantages or limitations to allow choose the most suitable approach for a particular application and also throw light on aspects that needs further attention. In view of above, this paper presents a review of development done in the optimization of EDM related process parameters. Keywords— EDM, MRR, EWR, SR, RSM, Taguchi.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using design of experiments approach and simulated annealing algorithm for modeling and Optimization of EDM process parameters

The main objectives of this research are, therefore, to assess the effects of process parameters and to determine their optimal levels machining of Inconel 718 super alloy. gap voltage, current, time of machining and duty factor are tuning parameters considered to be study as process input parameters. Furthermore, two important process output characteristic, have been evaluated in this research...

متن کامل

An empirical study on statistical analysis and optimization of EDM process parameters for inconel 718 super alloy using D-optimal approach and genetic algorithm

Among the several non-conventional processes, electrical discharge machining (EDM) is the most widely and successfully applied for the machining of conductive parts. In this technique, the tool has no mechanical contact with the work piece and also the hardness of work piece has no effect on the machining pace. Hence, this technique could be employed to machine hard materials such as super allo...

متن کامل

Improvement of Surface Finish when EDM AISI 2312 Hot Worked Steel using Taguchi Approach and Genetic Algorithm

Nowadays, Electrical Discharge Machining (EDM) has become one of the most extensively used non-traditional material removal process. Its unique feature of using thermal energy to machine hard to machine electrically conductive materials is its distinctive advantage in the manufacturing of moulds, dies and aerospace components. Howevere, EDM is a costly process and hence proper selection of its ...

متن کامل

Influence of EDM Characteristic Parameters on the Surface Microstructure in CK45 Alloy Steel

Electro Discharge Machining (EDM) is a very efficient machining process widely used in manufacturing components of complicated geometry. Based on its nature, i.e. material removal by electric discharge, the process induces thermal stresses that in turn result in generation of wide spread micro-cracks on the surface of the machined part. In this paper the influence of EDM characteristic paramete...

متن کامل

Optimization of Edm Process Parameters Using Taguchi Method: a Review

Electrical discharge machining is assessed on the basis of Material Removal Rate (MRR), Tool Wear Rate (TWR), and Surface Roughness (SR). Process parameters that mostly affected the EDM Process are Pulse on Time, Pulse off Time, Discharge Current, Arc Gap and Duty Cycle. This paper reviews research for the optimization and improvement of various performance parameters measured in the experiment...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014